BN-O3A O3 Type Sodium Ion Battery Positive Electrode Material

Na:20.6 ± 0.3%
Ni: 17.6 ± 0.3%
Fe:16.7 ± 0.3%
Mn:16.5 ± 0.3%
D10: 7.0 ± 0.5um
D50: 9.2 ± 0.5um
D90: 11.5 ± 0.5um
Tap density: ≥1.9g/cm³
MOQ: 10g
Leading time: 5-7days

SKU: BN-O3A Category:

Sodium Nickel Iron Manganese Oxide BN-O3A O3 Type Sodium Ion Battery Positive Electrode Material

Overview​

​O3-type NaNiFeMnO₂ (BN-O3A)​​ is a layered transition metal oxide cathode material for sodium-ion batteries, with the general formula NaNiₓFeᵧMn₁₋ₓ₋ᵧO₂. It is characterized by its high theoretical capacity (~140 mAh/g at 0.1C), cost-effectiveness (abundant Fe/Mn resources), and structural stability. The “O3” denotes a trigonal prismatic coordination of Na⁺ ions, enabling high Na⁺ content but suffering from irreversible phase transitions during cycling.

​Key Features​

  1. ​Composition & Structure​​:
    • Typical stoichiometry includes NaNi₁/₃Fe₁/₃Mn₁/₃O₂ (111-type) or variants like NaNi₀.₄Fe₀.₂Mn₀.₄O₂.
    • Transition metals (Ni, Fe, Mn) synergize: ​​Ni​​ boosts capacity, ​​Mn​​ stabilizes structure, and ​​Fe​​ balances cost/performance.
  2. ​Challenges​​:
    • ​Irreversible phase transitions​​ (>4.0V) lead to structural degradation.
    • ​Air sensitivity​​: Reacts with moisture, forming electrochemically inactive NaOH/Na₂CO₃.
    • ​Jahn-Teller distortion​​ from Mn³⁺ and Ni⁴⁺-electrolyte side reactions.
  3. ​Performance Optimization​​:
    • ​Doping​​ (e.g., Ti, Mg, Cu): Stabilizes structure, suppresses phase transitions, and enhances Na⁺ diffusion.
    • ​Surface coating​​ (e.g., Al₂O₃, NaTi₂(PO₄)₃): Mitigates electrolyte corrosion and improves cyclability.
    • ​Morphology control​​: Spherical secondary particles (4–10 μm) with nano-sized primary grains enhance kinetics.

​Applications & Prospects​

BN-O3A is a promising candidate for ​​large-scale energy storage​​ (e.g., grid storage, EVs) due to its low cost and compatibility with existing Li-ion battery manufacturing. Recent advances in ​​high-entropy doping​​ and ​​P/O hybrid phases​​ aim to further improve energy density (>420 Wh/kg) and cycle life (>500 cycles at 1C)

Specifications​

Item Unit Specification Value Reference Standard Test Equipment Model
Na wt% 20.6 ± 0.3 20.7 GB/T 27598-2011 Agilent 5800
Ni wt% 17.6 ± 0.3 17.6 GB/T 27598-2011
Fe wt% 16.7 ± 0.3 16.7
Mn wt% 16.5 ± 0.3 16.5
D10 μm 7.0 ± 0.5 7.9 GB/T 19077-2016
D50 μm 9.2 ± 0.5 9.7 GB/T 19077-2016 Beckman Coulter LS 13320
D90 μm 11.5 ± 0.5 11.8 GB/T 5162-202X
Tap density g/cm³ ≥1.9 2.0 Tap Density Testing Instrument
SSA (BET) m²/g ≤2.0 0.5 GB/T 19587-2004
2TFPD g/cm³ GB/T 24533-2019 MYCRO Carver 4350
0.1C Capacity mAh/g 135 ± 2 136 Evaluate method in half cell
1C Capacity mAh/g 130 ± 2 132 Electrolyte: 1M NaPF6 in esters solvent
Efficiency Voltage window: 2.0-4.0V
50th Retention (1C) % 90
NaOH wt% 0.3 0.3 METTLER TOLEDO G20